Dynamics and Abstract Computability: Computing Invariant Measures
نویسندگان
چکیده
We consider the question of computing invariant measures from an abstract point of view. Here, computing a measure means finding an algorithm which can output descriptions of the measure up to any precision. We work in a general framework (computable metric spaces) where this problem can be posed precisely. We will find invariant measures as fixed points of the transfer operator. In this case, a general result ensures the computability of isolated fixed points of a computable map. We give general conditions under which the transfer operator is computable on a suitable set. This implies the computability of many “regular enough” invariant measures and among them many physical measures. On the other hand, not all computable dynamical systems have a computable invariant measure. We exhibit two examples of computable dynamics, one having a physical measure which is not computable and one for which no invariant measure is computable, showing some subtlety in this kind of
منابع مشابه
New Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups
In this paper, a new algorithm for computing secondary invariants of invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants. The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...
متن کاملComputability of invariant measures: two counter-examples
We are interested in the computability of the invariant measures in a computable dynamical system. We construct two counter-examples. The first one has a unique SRB measure, which is not computable. The second one has no computable invariant measure at all. The systems are topological, i.e. continuous transformations on compact spaces, so they admit invariant measures. A topological dynamical s...
متن کاملOn the relation between representations and computability
One of the fundamental results in computability is the existence of well-defined functions that cannot be computed. In this paper we study the effects of data representation on computability; we show that, while for each possible way of representing data there exist incomputable functions, the computability of a specific abstract function is never an absolute property, but depends on the repres...
متن کاملOn the inversion of computable functions
The question of the computability of diverse operators arising from mathematical analysis has received a lot of attention. Many classical operators are not computable, and the proof often does not resort to computability theory: the function under consideration is not computable simply because it is not continuous. A more challenging problem is then its computable invariance: is the image of ev...
متن کاملA Theory of Stream Queries
Data streams are modeled as infinite or finite sequences of data elements coming from an arbitrary but fixed universe. The universe can have various built-in functions and predicates. Stream queries are modeled as functions from streams to streams. Both timed and untimed settings are considered. Issues investigated include abstract definitions of computability of stream queries; the connection ...
متن کامل